Welcome Guest

View by Topic

Applications (http://www.hpcwire.com/topic/applications)

Developer Tools (http://www.hpcwire.com/topic/developertools)

Interconnects (http://www.hpcwire.com/topic/interconnects)

Middleware (http://www.hpcwire.com/topic/middleware)

Networks (http://www.hpcwire.com/topic/networks)

Processors (http://www.hpcwire.com)
HPCwire: Researchers Tackle Nanoelectronics RoadBlocks

http://www.hpcwire.com/features/17882239.html

5 of 15 5/29/2009 4:52 PM
HPCwire: Researchers Tackle Nanoelectronics Roadblocks

http://www.hpcwire.com/features/17882239.html
University at Buffalo (UB) engineers are working to solve two significant roadblocks impeding the creation of smaller, faster and more powerful electronic devices.

Working atom by atom, Cemal Basaran, Ph.D., and David Kofke, Ph.D., are taking on the problems of electromigration and thermomigration -- the tendency for atoms to behave erratically when charged by the very high density electrical currents required to power super-small and super-powerful electronic devices.

Basaran is director of the Electronics Packaging Lab in the UB School of Engineering and Applied Sciences and is professor in its Department of Civil, Structural and Environmental Engineering. A UB Distinguished Professor, Kofke is chair of the Department of Chemical and Biological Engineering in the School of Engineering and Applied Sciences.

High electrical current densities and high temperature gradients create voids within metal conductors, the researchers explain. This leads to breakdowns in circuitry and results in device failure. Moreover, as electronic devices and their circuits get smaller -- down to the nanoscale -- the damaging effects of electromigration and thermomigration increase.

With the support of a $250,000 grant from the National Science Foundation, Basaran and Kofke are using computer simulations and laboratory experiments to devise ways to lessen or stop electromigration and thermomigration. Engineers from the Intel Corp. are collaborating with the UB researchers on the project.

"Once we learn to stop this self-destructive process in metals, any component in a computer chip can be made at the nanoscale," says Basaran. "But unless you solve this problem, you cannot have fast-performing nanoelectronic devices, and further miniaturization in electronics may not be possible."

The science of nanoelectronics is focused on creation of nanoscale circuits, wires and packaging of semiconductors. The goal of industry is to use these components to manufacture a new class of very small and very powerful electronic devices, such as wristwatch-sized supercomputers. One nanometer is about 1/100,000 of a human-hair diameter.
Working at the nanoscale level, the researchers intend to build semiconductor devices one atom at a time. According to Basaran, controlling placement of atoms in a material will give the researchers precise control of their properties, thus reigning in the erratic behavior that causes system breakdowns.

"When you design materials at the atomic scale you get properties you wouldn't get otherwise," Basaran says. "You get exact properties that you want instead of what nature dishes out for you. This means you can do things with a material that you couldn't imagine doing before with the same material."

The goal of the UB researchers is to design nanoscale chips, circuits and solder joints that can withstand very high current densities and very high temperature gradients.

Page: 1 of 2

Discussion
There are 0 discussion items posted.

Join the Discussion
You must be a registered user (/s?action=reg) in order to comment on HPCwire stories.
Members enjoy:

- Access to Special Content, including Podcasts, Webcasts, and Whitepapers and more!
- Ability to take an active role in the discussions that are shaping the HPC technology discipline!
- Special offers available only to HPCwire members!

Become a Registered User Today! (/s?action=reg)

Registered Users Log in Here to Comment

Email Address: Password (case sensitive)

Remember me Forgot Password? (/s?action=passwordReminder)

Sponsored Links

It’s not too early to plan for SC09 in Portland, OR. Contact us if you need a little or a lot of help with your presence at this critical event. Learn how our value-driven SC Conference expertise can maximize your budget and bring home revenue-generating leads.

On-Demand Webcast: Building a Cost-Effective HPC Cluster (http://www.hpcwire.com/r?19=950&32=4982&7=315267&40=http%3A%2F%2Fwww2.eventsvc.com%2Fappro%2Fevent%2F1b01209d-9a75-4a85-8a78-4a1c14896920&41=On-Demand+Webcast%3A+Building+a+Cost-Effective+HPC+Cluster&18=0.9022541506471317)
Join us to learn the benefits of the Appro GreenBlade™ System based on Intel® Xeon® processors 5500 series and how it can help reduce electricity costs required to power and cool servers by over 20% while being able to place up to 55% more blades compared to 1U rack mounted servers.

Learn how domain experts can run VHLL programs like MATLAB® on a variety of high-performance platforms without low-level reprogramming and how to work with the largest datasets and complex algorithms without sacrificing ease of use or reducing productivity.

PGI Release 8.0: Complete MPI and OpenMP HPC SDK

Learn how domain experts can run VHLL programs like MATLAB® on a variety of high-performance platforms without low-level reprogramming and how to work with the largest datasets and complex algorithms without sacrificing ease of use or reducing productivity.
May 29, 2009

IBM, Syracuse University, New York State to Build Energy-Efficient Datacenter

IBM, Syracuse University, and New York State are working together to build an energy-efficient data center. The project aims to integrate sustainable practices into the design and operations of the facility. Read more...
May 28 | The Register | Intel says Nehalem EP is well on its way to dominating the two-socket server market. Read more... (http://www.hpcwire.com/news/Intel-Nehalem-EP-Ramp-is-Steep.html)

May 28 | Singularity Hub | If many hands make light work, then maybe many computers can make an artificial brain. Read more... (http://www.hpcwire.com/news/Create-an-AI-on-Your-Computer.html)

May 26 | Forbes | Three manufacturers are using high performance computing to outrun the competition. Read more... (http://www.hpcwire.com/news/American-Businesss-Secret-Competitive-Weapon-HPC.html)

Read more headlines... (http://www.hpcwire.com/news)

Featured Whitepapers

Apr 28 | Engineers, scientists, and other domain experts depend on the productivity enabled by very high-level language (VHLL) tools like MATLAB® and Python. However, as datasets grow larger and programs get more sophisticated, ordinary desktop computers can no longer keep up. The paper explores how to run VHLL programs on high-performance platforms without low-level reprogramming. Work with large datasets and complex algorithms without sacrificing ease of use or reducing productivity.

Building High Performance Computing in a Green and Modular Solution Building Block (http://www.appro.com/whitepaper/HPC_in_a_Green_Modular_Solution_Building_Block.asp)

Apr 14 | Many HPC IT departments are feeling the rising pressure to deliver more capacity computing and performance while trying to reduce the total cost of ownership. This white paper discusses how an environmentally-friendly and open-standards HPC building block based computing system using flexible interconnect options helps address capacity computing needs.

Multimedia

Source: Addison Snell, GM/VP, Tabor Research; sponsored by Dell

Many organizations that could benefit from the use of HPC clusters find that it is complicated to get the systems up and running because of limited IT resources or the complexities of the clusters themselves. Learn how the Intel Cluster Ready program, for which Dell was an original partner, seeks to address this challenge for entry level and mid-range

Associate Laboratory Director–Computing & Computational Sciences (http://www.hpcwire.com/jobbank/?url=jobdetails%2Ecfm%3Fjid%3D366)

Oak Ridge National Laboratory

Center Director, Deep Computing Research Center (http://www.hpcwire.com/jobbank/?url=jobdetails%2Ecfm%3Fjid%3D350)

King Abdullah University of Science and Technology

Scientific Software Development in Computational Biochemistry (http://www.hpcwire.com/jobbank/?url=jobdetails%2Ecfm%3Fjid%3D371)

D. E. Shaw Research

Visit the HPCwire Job Bank ([jobbank](http://www.hpcwire.com/jobbank))

Visit the HPCwire Job Bank ([jobbank](http://www.hpcwire.com/jobbank))
HPC users.

Video White Paper: Architecting a Better Network Storage Solution (http://www.accelacomm.com/jlp/bluearc1/o/80548915/)

BlueArc's Titan architecture represents an evolutionary step in file servers by creating a hardware-based file system that can scale bandwidth, IOPS, and overall data capacity well beyond conventional software-based devices. With its ability to virtualize a massive storage pool of up to four usable petabytes of tiered storage, Titan can scale with growing data requirements, offering a competitive advantage for businesses, researchers, or other enterprises seeking to better manage data growth while still ensuring optimal performance.

Sun Studio Compilers and Tools and Sun HPC ClusterTools allow you to create high performance parallel applications for OpenSolaris, Solaris and Linux. Sun Studio Express 11/08 includes MPI performance analysis capabilities and full OpenMP 3.0 compiler support. Learn about all this and the latest in Sun HPC ClusterTools 8.1.

More Multimedia (http://www.hpcwire.com/multimedia)

HPCwire: Researchers Tackle Nanoelectronics RoadBlocks http://www.hpcwire.com/features/17882239.html

HPCS 2009 (http://www.hpcs2009.org)
June 17-19, 2009
Kingston, Ontario
Canada

International Supercomputing Conference ISC‘09 (http://www.isc09.org)
June 23-26, 2009
Hamburg Germany

Data Mining: Levels I, II, & III (http://www.the-modeling-agency.com/training/series.html)
Denver, CO
USA

Las Vegas, NV
USA

View/Search Events (http://www.hpcwire.com/events)
Post an Event (http://www.hpcwire.com/events/submit)